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ABSTRACT

The slope bias when the predictor variable suffers from measurement errors is investigated. The
presence of measurement errors can undermine the least squares linear regression parameter estimates,
which in turn will have consequences if slope-based meaningful functions are calculated and used.
Methods to determine suitable regression model choice are outlined. Also, the consequences of data
size shrinkage due to scaling by metabolic weight in energy balance studies are illustrated. A problem
arises when the assumed value of the metabolic index (b) changes. In the literature, this index varies
from 0.62 to 0.75 for calculation of metabolic weight (MW) from live weight (LW) i.e. MW=LW?. The
estimates of regression parameters vary according to the assumed value of the metabolic index b and
that will impact further on intercept and slope based calculations. Similar problems occur when
allometry functions are linearized using logarithmic transformation. Disproportional shrinkage of data
size introduces scale bias which can introduce inaccuracies in further use of the regression parameters.
Both of these issues have potential difficulties when using databases where data size is unevenly
distributed.

Key words: Allometry, energy balance, measurement errors, metabolic scaling, scaling index, type I
model, type IT model

INTRODUCTION

Measurement errors in the predictor variable ~ accounts for these errors in the x-variable.With
lead to slope (/) attenuation or negative slope bias assumptions about the measurement error variances,
when using linear type I or ordinary least squares WO options of type Il model are relevant: (1) major
regression (OLS). This bias is proportional to simple ~ 8Xis regression (MA) when error variances of the
correlation (1/r_). Mitigation of this problem is Y~ and x—vaqab]es Al deem(—fd to be equal; and (2)
achieved by using a type II regression instead, which reduced major axis regression (RMA) when the
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error variances of the y- and x-variables are
proportional to their underlying true variances. RMA
is related to the usual “y-on-x and x-on-y” regression
lines. Application of type II regression models is
demonstrated for metabolic scaling of data and
estimation of allometric relationships.

The power model, y = ax”, is the most
commonly used and debated model in allometry
studies. Historically, the allometry function is
linearized using logarithmic transformation.
Justification for this transformation tends to be the
equalisation of variance and also allometry index
estimation is much simpler on the log-scale using
linear regression. However, parameter estimation
of allometric functions on the log-scale has the
additional problem of unequal shrinkage of data
size, which in turn introduces bias in relation to the
original scale. To alleviate this problem, Guest (1961)
recommended use of weighted linear regression as
mentioned below. To accommodate changes in the
variance of the predictor variable, type II regression
methods are needed. The objectives of this study
were to analyse changes in the variables when
scaling factors or logarithmic transformations are
introduced and the influence of the type of regression
used on the estimation of biologically meaningful
parameters from scaled or log-transformed variables.
The analysis is based on two case studies (energy
balance and allometry) with fundamental relevance
in the field of animal nutrition and metabolism.

MATERIALS AND METHODS

Type II regression models

The type II model is also known as Deming
regression (Deming, 1943) with the measurement
error variance ratio lDeming: U4, (see below). This
model is necessary in cases where meaningful
interpretation of regression coefficients and their
functions is required. Type II regression allows

incorporation of predictor measurement errors to

estimate the maximum likelihood (ML) slope (,[)’ML)
with the model defined (Deming, 1943; Kendal and
Stuart, 1966; Madansky, 1959; Dhanoa, et al.,

2010a) as:
s Ol=hy8l+ (62 -4y 6D +42, 62

M 25,
where 4, = c?f/c?(? i.e.the ratio of the
measurement error variances of the y- and x-
variables, c?r‘2 and éf are the sample variances of
the x- and y-variables, respectively, and &2 is the
sample covariance between the x- and y-variables.
Mandel (1964) showed that the above slope estimate
is related to the ordinary least squares (OLS) slope
estimate as: ﬁ
A _ OLS:y.x

Snedecor and Cochran (1980) give this formula in
the alternative form:

(€]

~
A A 5
BML = BOLS:‘\..\' §2 7 )

x 0_6

For the special case MA, set XML=1 in the above
maximum likelihood (ML) equation. For alternative
forms of the major axis slope, f,,, see Dhanoa ez
al. (2010a).

In the ML equation it is assumed that the
variance of the data values is contstant. In cases
where this assumption is not tenable, Ripley and
Thompson (1987) proposed a reiterated weighted
procedure referred to as functional relationship
estimation by maximum likelihood (FREML; Royal
Society of Chemistry, 2002).

Metabolic scaling of data

In animal energy balance studies, it is
customary to scale data with metabolic weight (MW)
where MW = LW? (LW denotes live weight and b
metabolic index). Unfortunately such scaling results
in nonlinear effects on data value size and variance
(Dhanoa et al., 2015) and has consequences for
regression parameter estimates. OLS regression
may no longer be appropriate.
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Allometry on the log-scale

The general allometry function y = ax’

(Huxley, 1924), where a is the scaling constant and
b the metabolic index, is usually expressed as a
linear function on the log-scale:

log(y’.) = log(a) + blog(x,.) + g,

Here, subscript i denotes the ith item of samples x
and y, and ¢, are assumed to be normally distributed
additive errors. This equation holds for any base of
logarithm but in this paper log_is assumed. In the
absence of measurement error estimates OLS, MA
or RMA regression models are used to derive
estimates of the metabolic index b. In the case of
OLS regression, slope (and hence the intercept)
are biased estimates which may be corrected as
explained above. Also in the case of OLS regression,
unequal shrinkage of small to large values causes
scale mismatch which requires that weights are
necessary to approximate nonlinear estimates.
These weights (w',) were proposed by Guest (1961)
and were shown to be w,=w)’ where w= I/var
(y,.). On the importance of weights, Guest (1961)
stated 'even if the original observations were all of
equal weight, the transformed observations must
be weighted, for otherwise the estimates will be
inefficient and the standard deviation calculations
completely incorrect’.

RESULTS

Metabolic scaling effects on energy balance
analysis

In the particular case of energy balance
studies, a further complication arises from scaling
the energy components (i.e. energy retention (ER)
and metabolisable energy intake (MEI)) by the
metabolic weight (LW?) of the animals. Due to
lack of consensus, various values for the metabolic
index (b), ranging from 0.62 to 0.75 have been
used. These values result in respective metabolic
weights that follow a nonlinear trend over the
range of b for both the mean and variance (Fig.1).
Rate of metabolic-weight-value shrinkage from &
= 0.75 down to b = 0.62 is faster for variance
than for the mean.
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Metabolic index (b)
Fig. 1. Data from a calorimeter study using thirty-
one growing steers with mean live weight

of 142.4 kg (Sanderson et al., 1995)

[
s

One of the main purposes of energy balance
studies is to derive estimates of efficiency of energy
utilisation for growth (k_ or k) and metabolisable
energy requirement for maintenance (M, ). Mostly,
the type I model or OLS regression is used to fit
a linear model to relate ER and MEI:

ER = (MEI-M, ) x k, =k xMEI-k xM_

so that kg and kgx M are the slope and the
intercept, respectively, of the model. In OLS,
metabolic scaling effects on MEI variance will not
be accounted for as predictor variables are assumed
error free which results in attenuation of the least-
squares slope estimate (Dhanoa et al., 2000; 2007;
2010b). However, with the type II regression model,
predictor measurement errors are modelled and
slope attenuation is avoided (McArdle, 1988;
Dhanoa and Sanderson, 2010).

Uncertainty from both ER or MEI and LW?
gets propagated into the ratios ER/LW?and MEI/LW?®
according to the formula (Ku, 1966; Wikipedia, 2016):

ole~(PIQ) {(crp 1P) +(o, .'Q)2 -2%5’

where P = ER (or MEI) and Q = LW’ and
ol = (LW"’)ZI{%J
Decreasing values of b cause shrinkage of the LW?

scale which in turn causes reverse shrinkage of ER
and MEI data scaled by LW? (Table D).
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Table 1. Influence of metabolic scaling index (b) on mean scaled daily ER and MEI
(Sanderson et al., 1995) and their correlation (r)

b ER (MJ/kg LW") MEI (MJ/kg LW?) .

Mean SD Mean SD FRMEL
0.62 0.1463 0.12553 1.2937 0.20631 0.6970
0.63 0.1392 0.11949 1.2310 0.19501 0.7016
0.64 0.1325 0.11375 1.1714 0.18434 0.7063
0.65 0.1261 0.10828 1.1146 0.17428 0.7109
0.66 0.1200 0.10308 1.0606 0.16478 0.7156
0.67 0.1142 0.09813 1.0092 0.15582 0.7203
0.68 0.1087 0.09341 0.9603 0.14736 0.7250
0.69 0.1035 0.08893 0.9138 0.13937 0.7298
0.70 0.0985 0.08466 0.8695 0.13183 0.7345
0.71 0.0938 0.08059 0.8274 0.12471 0.7392
0.72 0.0892 0.07673 0.7873 0.11800 0.7440
0.73 0.0849 0.07304 0.7492 0.11166 0.7487
0.74 0.0808 0.06954 0.7129 0.10567 0.7535
0.75 0.0769 0.06621 0.6784 0.10002 0.7582
1.00 0.0224 0.01945 0.1964 0.02684 0.8577

Table 2. Influence of metabolic scaling index (b) on kg and M, MlJ/kg LW?)

Type I Type II
b OLS FREML MA RMA
k, M, kg M, k, M, k, M,
0.62 04241 0.9489 0.5268 0.9884 0.5030  1.0030 0.6085 1.0534
0.63 04299 0.9073 0.5329  0.9439 0.5096  0.9579 0.6128 1.0039
0.64 0.4358 0.8674 0.5391  0.9015 0.5162 0.9147 0.6170 0.9567
0.65 04417 0.8291 0.5453  0.8608 0.5228 0.8734 0.6213 09116
0.66 04476 0.7925 0.5516  0.8220 0.5293  0.8338 0.6255 0.8687
0.67 0.4536 0.7574 0.5580 0.7849 0.5359  0.7960 0.6298 0.8278
0.68 04596 0.7237 0.5644  0.7494 0.5424  0.7598 0.6339 0.7888
0.69 04656 0.6915 0.5708  0.7155 0.5488  0.7252 0.6381 0.7516
0.70 04717 0.6607 0.5773  0.6831 0.5552  0.6921 0.6422 0.7161
0.71 04777 0.6311 0.5838  0.6522 0.5616  0.6604 0.6462 0.6823
0.72 04838 0.6028 0.5904  0.6226 0.5679  0.6302 0.6502 0.6501
0.73  0.4898 0.5758 0.5970  0.5943 0.5741 0.6012 0.6542 0.6193
0.74 0.4958 0.5498 0.6036  0.5673 0.5802  0.5735 0.6581 0.5900
0.75 05019 0.5250 0.6103  0.5415 0.5862  0.5471 0.6619 0.5621
1.00 0.6215 0.1603 0.7656  0.1667 0.6884  0.1638 0.7246 0.1654
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Any impact of the b scaling on regression
parameters and their functions such as k and
M, are illustrated with energy balance data recorded
in respiration chambers over two days (Sanderson
et al., 1995). Four linear regression models are
relevant to energy balance data analysis, viz.

i.  Ordinary least squares (type I model; OLS)
ii. FREML (type II model)

iii. Major axis (type II model; MA)

iv. Reduced major axis (type II model; RMA)

M_ (the MEI required for maintenance) was
calculated for each model as {-intercept/slope}.
Each of the b index values gives different scale to
the resulting MW and also leads to different scaled
ER and MEI values. To get comparable data we
calculated daily metabolisable energy required for
maintenance of an animal with the mean LW for
each b index value using M from the above four
regression models. These models give different
estimates depending on how they deal with changes
of scale and variances (Table 2).

The allometry power function on the log-scale

Empirical evidence for log-transformation: the
Horvitz rule

When variance of the response variable y
increases as its mean or expected value E(y)
increases, i.e.

var y, o {E(yr.)}z(lfi'm')

then Taylor series analysis shows that variance is
approximately stabilised (Atkinson, 2003) by using
response as:

y{km )\.B: -_;t(}
log(y) k=0

For a Box-Cox lambda (4,)=1 no transformation
is needed, ;{BC=0 indicates log-transformation,
Ape=0-5 will be square root transformation whilst
other non-zero A, values may point to Box-Cox
system of transformations (Box and Cox, 1964).

The above expression can be written as:

log(sr\,) =75+ (1-25c)[E(%)]

where s is the standard deviation of y, if replicate
values of y are available and v, is the intercept.
Throughout this paper log, is adopted but the
equations can be used with any log-base using the
relationship log X/ log NN = log, X, where NN is
any logarithmic base e.g. 10, 2 etc. and X is any
data. In the absence of replicates, data may be
compressed into smaller size by clustering into
groups of increasing mean values.

Data size shrinkage when transforming to the
log-scale

To demonstrate log-transformation shrinkage
effects, we have taken unadjusted mammal species
metabolic rate (MR; ml O2 h'') and mass (g) data
(N = 469) from the electronic appendix to the article
by White et al. (2006) on the scaling and temperature
dependence of vertebrate metabolism. Many of
these data are from relatively smaller size species
and that makes it unsuitable for nonlinear fitting of
the allometry power function.

Skew data distribution does not always imply
a log normal distribution. An overlapping mixture
of normal distributions can cause skewness and
multimodality. For example, Box-Cox
transformation of the mammal species data (both
MR and mass) gave i, = -0.2 instead of 0
which would indicate a log normal distribution (only
amphibians gave 4, = 0). Therefore, a multimodal
distribution is indicated. Given no species
misclassification, the distribution mixture is most
likely due to lack of data over the range where
these two components overlap. Further analysis of
these data on a log-scale showed a double-normal
model fitted well with either common variance or
separate variance (Table 3). These results may be
used to partition data into two component distributions
before analysis. However, for a single species one
expects a common allometric index. More data are
required to correct distribution fragmentation in the
White et al. (2006) databases.
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Table 3. Parameters of the fitted double normal distribution with component means (Mean 1; Mecan 2)
with standard deviations (SD 1; SD 2) respectively and the proportion of the larger mean

component (p)

Ape Mean 1 Mean 2 SD 1 SD2 P
Mammals MR -0.2 6.793 4213 0.9583 0.9583 0.2468
Mass -0.2 6.644 3.584 1.8112 0.8906 0.4908
Birds MR 0.5 5.630 3.820 0.8045 0.4235 0.3254
Mass -0.3 6.038 3.066 0.8453 0.8453 0.2635
Reptiles MR -0.1 3.481 0.290 1.3378 1.3378 0.4019
Mass 0.1 5.090 2.335 1.2145 1.2145 0.4399
Fish MR 0.1 1.894 -2.058 1.4050 1.4050 0.8292
Mass 0.1 5.186 1.093 1.4777 1.4777 0.7444
Amphibians MR 0.0 0.422 -1.586 1.1540 0.2818 0.7043
Mass 0.0 2.660 0.048 1.6440 0.2625 0.8694

Here, we will concentrate on the problem of
data size shrinkage and its consequences when
analysis is performed on the log-scale. Using
mammal mass data on the log-scale as percentage
of the original mass observations, the differential
size reduction can be seen in Fig. 2. It is evident
that larger size observations are shrunk to a greater
extent relative to the smaller size observations,
leading to changes in the variance. The effect on
log-scale variance change is accommodated by type
IT regression models, e.g. RMA, but not by OLS.

Further, we use quantile regression (Koenker,
2005) of log (MR) on log (Mass) for mammals to

1004 comso mms e 8o cmer ®
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Mass - log,(Mass) (% Mass)

L i L
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Mass (g)

Fig. 2. Shrinkage of White ef @/. (2006) mammal mass
data ( = 5000 g) on transformation to the log -scale

see if data distribution on the log-scale is free from
unexpected serious stratification. For this purpose
10", 25% 501 75% and 90" percentile regression
lines are selected as shown in Fig. 3. Despite
observation crowding at the lower end (original
scale), slopes are generally parallel from the
10" (lower line) to the 90™ (upper line) percentiles.
A normal distribution with mean 4.850 (£0.0678)
and standard deviation 1.468 (£0.0480)was fitted
to the log-scale data for MR. However, lack of fit
as measured by deviance (distributed as y°) was
69.86 on 19 degrees of freedom, which was
significant (P < 0.05). When examined further using
a probability plot, some observations did not fall
within the 95% confidence interval. Also, the Box-
Cox A was slightly less than zero. As shown above
(Table 3), the best fit model was an overlapping
double-normal with unequal variances for the two
components. Such features can cause variation or
bias in the slope estimates if sub-samples of these
data are used for regression analysis. Quantile
regression also shows how the slope estimate
(allometric index) varies across the entire range of
the percentiles as shown in Fig. 4. These changes
in the slope estimate will cause variation in the
estimates of the y-axis intercepts. If one is using
regression parameter estimates for further
calculations, these variations are worth considering.
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Fig. 3. Fitted linear quantile regression lines for
White et al. (2006) mammal data at 10"
25% 50, 75" and 90" percentiles '
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Fig. 4. Variability of the linear quantile slopes, i.e.
allometric index, from log (MR) versus
log (Mass) over the entire quantile range

Table 4 shows allometry index estimates
using nonlinear, type I, type II and quantile
regression models for each of the five classes of
animals in the White er al. (2006) data set. In
these data, there are some outliers which will
undermine the weighted regression model (possibly
an indirect way to detect outlier problems).

Bias correction in the log-scale allometric
equation

The logarithm of the linear scale mean is not
equal to the mean of logged values. This difference
is equal to the gap between the geometric mean
(GM) and arithmetic mean (AM) in the original
observations. Anti-log of log-scale mean equals GM,
whilst for AM a correction derived by Finney (1941)
and illustrated by Sprugel (1983) needs to be applied.
Finney (1941) showed that:

A a2 2 ~ A2 2
AM = =¢fe’!
where {i and &° are estimates of mean and variance

on the log-scale respectively. Sprugel (1983) called
this variance estimate SEE which is also known as
mean square prediction error (MSPE), i.e.

SEE = JZ{log(y!)flog(yj }r.m}z/(N -2)

where log(y,) ., are the log-scale fitted values (we
use log, here but this can be converted to any other
base) and N is the sample size. The correction

falctoref"zl'2 must be applied if log-scale quantities
are to be transformed back to the original scale.
Allometry data compression

In the Deming, MA and RMA models, it is
implicitly assumed that measurement errors are
equal across the whole data range. In order to
illustrate the relevant methodology for handling
individual observation variances, we arbitrarily
compress the example data into 40 groups on the
basis of MR, temperature and mass data size using
non-hierarchical cluster analysis. The mean and
variance of these groups were used to calculate
linear functional relationship estimates using the
FREML software of Ripley and Thompson (1987)
as implemented in an Excel Add-In (Royal Society
of Chemistry, 2002). Thus, using means and
variances of these 40 groups the fitted linear
equation was:

log (MR) = 1.4716 (0.10175)

+ 0.6788 (x0.01828) log (Mass)

The fitted line with both y-axis and x-axis
error bars is shown in Fig. 5.
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Fig. 5. Allometric relationship (solid line) between
log (MR) and log (Mass) for White et al. (2006)
mammal data as a ML regression with variable
A estimated using the FREML software of Ripley
and Thompson (1987). Error bars represent +1 SD
about the means of each of the 40 groups.

DISCUSSION

Energy balance analysis

Because of measurement errors, slope
attenuation is largest for OLS and mitigated to
different degrees by the three type II models
discussed here. Scale and variance shrinkage of
LW’ and energy balance components have
consequences when different values of the
metabolic scaling index are used. Estimates of
linear regression parameters and their meaningful
functions are also affected both by LW scaling
and type I and type II regression models (Fig. 6).
It is therefore necessary to account for these
effects with an appropriate regression model when
conducting literature reviews and further data
analyses such as modelling and meta-analysis.
Smaller differences on the analysis scale may
translate to larger differences on the original scale.

Allometry analysis on the log-scale

In order to cover the whole domain of a
species, a large data set is needed which can have
implicit shortcomings due to data coming from
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Fig. 6. Influence of metabolic scaling index (b) and regression
model on estimates of metabolisable energy for
maintenance of a steer with live weight of 142.4 kg.

20,5 -

different sources and also not covering the whole
range adequately. That results in distribution
fragmentation as illustrated above for our example
data. We have used bootstrap (Efron and Tibshirani,
1993) to verify regression parameter estimates and
their standard errors. Allometry analysis procedure
is quite well established but one needs to be aware
of some of the log-transformation effects such as
unequal data size shrinkage and need for an
appropriate regression model to deal with changing
variances. Inevitably, a type II regression model
will be needed to deal with consequences of log-
transformation in relation to scale and variances.

CONCLUSION

In this paper we have explained and
illustrated problems due to the metabolic scaling
index used to calculate MW from an animal’s LW
which is needed to scale energy balance
components, e.g. ER and MEI. Regression slope
of ER versus MEI is used as an estimate of
efficiency of energy retention for growth k , and
the x-axis intercept as an estimate of maintehance
energy M . A suitable regression model is needed
to cope with changes in variances caused by scaling
with metabolic weight at a chosen value of the
metabolic index b. Similarly log-transformation to
linearize the allometry equation for estimation of
the metabolic index has associated problems. As
illustrated above, this transformation has a
disproportional effect on both data scale and
variances. As in the case of energy balance data
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analysis, an appropriate regression model is
necessary. Furthermore, in taking regression
quantities back to the original scale, bias corrections
need to be carried out.
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